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Appendix A. Solution of Eq. 4 

Recoil of a bent fiber in a viscous fluid

For small deflections, the viscoelastic recoil of a fiber in a viscous fluid can be described by

modified beam equation. In contrast to cilia which exert an active force, a bent fiber exerts a

passive distributed drag force on the surrounding fluid due to the potential energy stored in its

initial deformed shape. The modified beam equation describing this recoil is given by Eq. 4.
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where the coordinate system and local instantaneous velocity are shown in Fig. A1.

Fig. A1. Sketch of recoiling fiber

Eq. A1 can be cast in dimensionless form 

XXXX TY Y= − ,                                                                                                                                [A2]

by introducing the dimensionless coordinates LxX /=  and ( )0,/ LyyY = , and dimensionless

time τ/tT = , where 4 /kL EIτ = . ( )( )Pf Krck // 2µπ= , the coefficient of the velocity term in

Eq. A1, is described in the main text.

Eq. A2 satisfies the dimensionless boundary and initial conditions:
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where Eq. A3e is the initial deflection due to a point load applied at X=1. The viscous loading

term on the r.h.s. of Eq. A2 is expressed in an infinite series of the form
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where the ai(T), i = 2, 3, 4 … are unknown time dependent functions. Substituting Eq. A4 into

Eq. A2, integrating term by term and applying the first two boundary conditions (A3a, b), one

finds that

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3 6 7 8 9

2 3 2 3 4 5,
2 6 360 840 1680 3024

X X X X X XY X T f T f T a T a T a T a T= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

                 ( ) ( )
10 11

6 7 ...
5040 7920
X Xa T a T+ ⋅ + ⋅ + ,                                                                            [A5]                                                                                                                                                                             

where f2(T) and f3(T) are also unknown functions of time. Differentiating Eq. A5 with respect to

T, provides another way to express YT, which is equivalent to Eq. A4. Comparing the coefficients

of Xn in these two expressions for YT, one obtains the following relationship between the ai(T)

and f2(T) and f3(T)

( ) ( )2
2

'
2

f T
a T = − ,                                                                                                                    [A6a]

( ) ( )3
3

'
6

f T
a T = − ,                                                                                                                    [A6b]

( ) ( )4 5 0a T a T= = ,                                                                                                               [A6c, d]



3

( ) ( ) ( )2 2
6

' ''
360 720

a T f T
a T = − = ,                                                                                                    [A6e]

( ) ( ) ( )3 3
7

' ''
840 5040

a T f T
a T = − = , etc.                                                                                              [A6f]

Therefore, Eq. A5 can be rewritten as
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Conditions A3c, d require that f2(T) and f3(T) satisfy,
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where higher order terms are neglected since Eq. A7 converges rapidly. Terms involving f2'' and

f3'' are also neglected because they introduce inertia which is very small in a viscous dominated

flow. The coupled equations for f2 and f3 thus simplify to
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Assuming a solution for f3 of the form 
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and substituting it into Eq. A9, one finds
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whose roots are ξ1=0.0044 and ξ2=0.0789.
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The solution for  f3 is
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Then, the simplified version of Eqs. A8a and b gives
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A1 and A2 are the integration constants which can be determined by applying the initial condition

A3e. 

( )1 2
1

2 1

3 1 120
A

ξ ξ
ξ ξ
− +

= −
− +

,                                                                                                          [A14a]

( )2 1
2

2 1

3 1 120
A

ξ ξ
ξ ξ
− +

=
− +

.                                                                                                            [A14b]

It should be pointed out that only first two terms in Eq. A7 are required to satisfy initial

condition A3e.

ξ1⋅τ is the short dimensional time constant that accounts for the initial transient change

in fiber shape after the point force P is released. ξ2⋅τ is the long dimensional time constant that

describes the long time recoil. We require ξ2⋅τ be equal to the single exponential, β =0.38 s,

obtained by curvefitting the experimental data in ref. 1. This matching leads to our theoretical

prediction that EI = 700 pN⋅nm2. 
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